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A common trait of the more established clustering algorithms such as K-Means and HCA is their tendency
to focus mainly on the bulk features of the data which causes minor features to be attributed to larger
clusters. For hyperspectral imaging this has the consequence that substances which are covered by only a
few pixels tend to be overlooked and thus cannot be separated. If small lateral features such as particles
are the research objective this might be the reason why cluster analysis fails. Therefore we propose a
novel graph-based clustering algorithm dubbed GBCC which is sensitive to small variations in data
density and scales its clusters according to the underlying structures. The analysis of the proposed
method covers a comparison to K-Means, DBSCAN and KNSC using a 2D artificial dataset. Further the
method is evaluated on a multisensor image of atmospheric particulate matter composed of Raman and
EDX data as well as an FTIR image of microplastics.

© 2019 Published by Elsevier B.V.
1. Introduction

Graph-based clustering comprises a family of unsupervised
classification algorithms that are designed to cluster the vertices
and edges of a graph instead of objects in a feature space. A typical
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application field of these methods is the Data Mining of online
social networks or the Web graph [1]. Usually the vertices of social
graphs are only sparsely connected. For clustering this has the
consequence that the similarity between objects (or vertices) can
no longer be established by simply measuring the distance be-
tween two data points as they do not necessarily have to be con-
nected by an edge. Instead paths that lead over other vertices have
to be found to determine their relation.

In the context of matrix-based spectroscopic data, graphs can be
used to derive an abstraction of the dataset that reflects only the
ring method with special focus on hyperspectral imaging, Analytica
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Fig. 1. Common clustering problems such as distance-separated (pairs 1e5, 2e4, 4e5),
density-separated (pair 2e3), touching (pair 1e2), and connected (cluster 5) clusters.
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local neighborhood relations between objects. This has the
advantage that less weight is given to bulk features of the data
whereas smaller structures gain more importance. Therefore
graph-based clustering algorithms are more flexible with regard to
non-hyperspherical shapes and some of them can cope with clus-
ters that differ greatly in terms of density and extent spatially
speaking.

In this paper we propose a novel graph-based algorithm for the
exploratory cluster analysis of hyperspectral images dubbed Graph-
Based Competitive Clustering (GBCC). The rest of the paper is orga-
nized as follows: Section 2 will give a short overview of graph-
based clustering algorithms. In section 3 we will discuss common
separability problems that arise in clustering and describe the
fundamental concept behind GBCC. Algorithmic aspects are
covered in section 4 followed by an experimental assessment in
section 5. The paper concludes with section 6 which offers some
final remarks about when GBCC might be applied.

2. Fundamentals and related work

Let xi ¼ ðxi;1; xi;2;…; xi;dÞ denote an object of d measurements
and X ¼ fx1;…; xng a dataset of n objects. Then a graph G ¼ ðV ; EÞ
can be derived from X such that the relations between objects are
represented by the presence or absence of connecting edges. The
objects xi; xj2X thus become vertices vi; vj2V . The edge that
connects vertices vi and vj is denoted as eij2E with an associated
weight wij � 0 describing the similarity between the two vertices.
Using matrix notation a graph can be described by assembling the
edge weights as the weighted adjacency matrixW ¼ ðwijÞ. If vi and
vj are not connected then the corresponding entry has the value
wij ¼ 0.

Some algorithms require a certain type of graph whereas others
leave it to the user to decide which graph representation is best
suited for the given problem. A straightforward technique for
clustering graphs is the removal of ‘inconsistent edges’. Here one
tries to create disconnected subgraphs by removing edges with
weights that differ significantly from others. Among many other
graph types the Minimum Spanning Tree (MST) and its variants
[2,3] are often used for this approach. Zahn [4] derived some basic
criteria how such edges can be detected.

A global approach is to determine the average edge length m and
variance s of the graph and remove all edges with weights
exceeding, e.g., mþ 3s. A different approach would be to limit the
edges used for the determination of m and s to, e.g., the 2nd -order
neighbors of the two vertices which are connected by the edge
under consideration.

Zhong et al. [5] argued that MST-based clustering uses too little
information to determine inconsistent edges referring to the spar-
sity of such graphs. In order to make the clustering more robust
they proposed to enhance the connectivity in the MST by a addi-
tional MST that is constructed from those edges not included in the
first one. Whether a cut that produces two disconnected subgraphs
is valid is then determined by a score that is based on the inter-
secting sets of the removed edges and the 1st - and 2nd -round MST
respectively.

Liu et al. [6] proposed using global and local edge constraints to
remove inconsistent edges from the Delaunay triangulation. The
remaining graph is then clustered by an algorithm based on spatial
reachability criteria which are in some sense comparable to those
used in DBSCAN [7].

Another approach to graph-based clustering is spectral clus-
tering. It can be defined as a family of algorithms that use standard
clustering methods such as K-Means to cluster the eigenvectors of
the Laplacian matrix L. It can be derived from the symmetric
weighted adjacency matrixW and the diagonal degree matrix Dii ¼
Please cite this article as: B. Hufnagl, H. Lohninger, A graph-based cluste
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Pn
j¼1wij through L :¼ D�W. By computing the first K eigenvectors

of the generalized linear eigenproblem Lu ¼ lDuwe can construct
the matrix U2Rn�K which contains the vectors u1;…;uK as col-
umns. The final clustering step is performed on the vectors yi2RK

which are the vectors corresponding to the ith row of U. The
resulting labels are then mapped onto the original vertices or ob-
jects respectively in order to come to the result.

The above eigenproblem was proposed by Shi and Malik [8] as a
bipartitioning algorithm and was later reused for K-way partitioning
in KNSC [9] which clusters the eigenvectors following the above
description. For an introductory tutorial to spectral clustering see
Von Luxburg [10] and Nascimento and De Carvalho [9] for a survey
on this research field. Recently proposed methods that are based on
spectral clustering are the ensemble method by Zhong et al. [11] and
a robust path-based method by Chang and Yeung [12].
3. Motivation and concept

Clustering is not a domain-independent discipline. In any field
where clustering is applied there are different goals which one
wants to achieve. As a result there are different problem definitions
for cluster separation which may or may not play a role in the
respective field or the dataset under consideration. Zahn [4] and
Handl and Knowles [13] give a rough classification of common
problems and separability criteria which are summarized in Fig. 1
(In this illustration we assume that the manually assigned cluster
labels constitute a meaningful separation).

The most trivial problem is the case of well-separated clusters.
Here any pair of points within one cluster is closer together than a
pair of points taken from two different clusters. A distance-sepa-
rated problem arises if two clusters are so close together that a
separation can only be achieved because the distance between the
two closest points is still significantly larger than the distance to
their respective neighbors within each cluster. This would be the
case for cluster pairs 1e5, 2e4 and 4e5. Contrary to such cluster
pairs the pair 1e2 is defined as a touching problem because the two
clusters are connected by a ‘neck’. A more advanced problem is the
cluster pair 2e3 which is referred to as density-separated. Here a
separation might be achieved by measuring the jump in data
density if one moves from cluster 2 to cluster 3. Cluster 5 is called a
connected cluster because the relationship between the objects can
be established by connecting all objects that are closer than a
certain threshold. In some applications noise rejection capabilities
also play an important role. A noise cluster is usually formed by
ring method with special focus on hyperspectral imaging, Analytica
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those objects which have not been assigned to any cluster. In Fig. 1
the noise cluster is indicated by the black dots.

The above separability problems are antithetic and therefore
very difficult to address conjointly. As each individual problemmay
or may not play a role in certain application fields of clustering
some algorithms are specifically designed for the associated tasks.
A common approach to assess and compare the characteristics of a
clustering algorithm with respect to others is to apply it to an
artificial 2D dataset such as the one given. In the hopes that the
obtained results also translate to higher dimensions we can then
make assumptions about which algorithmmight be better suited to
solve our task.

Seen from the perspective of hyperspectral imaging we believe
that an important clustering problem is missing here. The data
structure of hyperspectral images (HSIs) differs in many aspects
from the cluster structures given in Fig. 1. Spectra of the same
chemical compound tend to form lobe-like clusters which protrude
from the origin and extend into the d-dimensional feature space.
There can be different reasons why these lobes occur such as
varying concentration or thickness of the constituent. Another
source for varying intensity values can be the limited lateral reso-
lution which causes pixels to contain information from both the
background and the constituent.

Depending on the measured sample, mixture effects between the
chemical compounds may occur that connect these lobes through
veils of spectra which can be viewed as linear combinations of the
pure components. As a consequence the assumption that there exist
clear cluster boundaries between the chemical compounds may not
be justified. Further marginal differences in the spectra may be
indicative of different species which means that a clustering algo-
rithm has to be very sensitive to local variations in density.

As will be shown later the lobe-like cluster structures are best
approached by using a more suitable distance measure such as the
cosine similarity. However the differences in spatial extent and the
above mentioned mixture effects remain. Fig. 2 illustrates this case
as a two-dimensional artificial dataset. At first glance there are two
clusters at positions 1 and 2 which show no clear boundary be-
tween them. If one takes a closer look at position 2 the cluster is yet
another combination of two minor clusters. One might argue that
this constitutes a density-separable problem but on the other hand
this would require some notion of a boundary where the density
changes significantly. One approach to solve this problem is to use
the density gradient between the three clusters in order to separate
them. The authors will denote clustering problems which are
separable using data gradients as gradient-separable.
Fig. 2. A gradient-separable clustering problem combining three clusters. This kind of
clustering problem can be solved by using the changing density gradient between the
clusters as a separation criterion.
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The concept behind GBCC is to use the distance gradient between
consecutive pairs of data points to establish a decision boundary for
cluster separation. Fig. 3 illustrates this idea for two gradient-
separable clusters. Let P be a path whose endpoints lie in the
densest areas of the two clusters and has the following property: If
one starts a walk along the edges at vertex A the distance between
each consecutive pair of vertices increases monotonically until one
reaches vertex G. From there the distances decrease monotonically
until one reaches vertex L. An obvious candidate for separating the
two clusters is edge k as it is the longest edge along the path.

The goal is to label A to F and G to L respectively with distinct
cluster IDs. We can achieve this by using a simple set of conditions:
First a cluster can allocate the next vertex along path P if the
weight of the edge that leads to this vertex is greater than the
weight to the previous vertex. Second a cluster can conquer an
already allocated vertex if the first condition holds and the weight
of the edge following the next vertex is greater than the weight of
the edge between the current and the next vertex.

If we choose vertex A as our starting position and apply the first
condition we can thus label the vertices A to G with a cluster ID. At
vertex G however we have to stop as k> l. If we now start at vertex L
we can proceed until vertex H as G is already allocated to the first
cluster. Using the second condition we can now conquer vertex G
and overwrite its label asm< l and l< k. Since the second condition
is not satisfied to also conquer F as j< k the growth of the second
cluster is finished and we have arrived at the desired labeling.

This concept is of course oversimplified but nonetheless it de-
scribes the basics needed to transform this one-dimensional path
problem to a general graph. In the following sections we will deal
with how dense areas in graphs can be detected in order to use
them as starting positions and how this simple procedure can be
generalized in order to work on arbitrary graphs.

4. Graph-Based Competitive Clustering

4.1. Center detection

As the central idea of GBCC is that clusters can only expand
along paths of increasing edge weights the starting positions
Fig. 3. Fundamental Concept behind GBCC. The key idea of the algorithm is illustrated
by means of this one-dimensional path problem where the longest edge k separates
the two clusters.

ring method with special focus on hyperspectral imaging, Analytica
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should be situated in dense areas of the dataset. In the followingwe
will denote these positions as centers. With respect to the clustering
problem given in Fig. 2 we require a detection technique that is
invariant to large differences in density and spatial extent of the
clusters so that minor features can also be detected.

LetW ¼ ðwijÞ be aweighted adjacencymatrix andwij theweight
of the edge eij that connects vertices vi and vj. Further let Ni;k be the
set of neighbors of vi limited to a maximum of k-nearest neighbors.
Then the vertex weight is defined as

vWi : ¼ 1��Ni;k
��X

j

wij cj : vj2Ni;k: (1)

Limiting Ni;k to the k-nearest neighbors arises from the simple
necessity that a meaningful average weight has to be limited to the
closer neighborhood. By computing vWi for every vertex vi2 V we
can thus compare the values of neighboring vertices with each
other to determine a minimum. Let Nq

i be the qth -order neigh-
borhood of vi which are all vertices that are reachable from vi over q
edges. We can then define the order of the center as

voi : ¼max
n
q : vWi < vWj cvj 2Nq

i \vi
o
: (2)

vi has to be excluded from Nq
i as it is its own higher order neighbor.

Put in other words a vertex i is a center of order q if it is the min-
imum of the vertex weight within an qth -order neighborhood.
Fig. 4 illustrates this concept for a one-dimensional graph.

As can be expected the computation of voi is time-intensive and
as the global maximum is of infinite order we have to define an
upper boundary u at which the calculation for a specific vertex
stops. As will be shown in section 5.2.2 it suffices to compute voi up
to a value of u :¼ 10 to extract relevant centers. Since the number of
vertices for which voi � 1 is usually very large we can limit the
number of centers used for the clustering to

vci : ¼
(

true if voi � p

false otherwise
; (3)

where p is a user-defined value that is tuned until the number of
centers comes close to the number of desired clusters.

The above methodology for detecting the centers is a form of
density estimation. The notion of detecting clusters as dense re-
gions in feature space is a common approach in clustering. For K-
Means this notion can be used to initialize the centroids in dense
regions of the feature space which may result in an improved
convergence rate [14,15]. Alternative algorithms for such tasks
which are perhaps less sensitive than the above method but
certainly faster are DDDE proposed by Fr€anti and Sieranoja [16] and
the initial step of the density peaks algorithm by Rodriguez and
Laio [17].
Fig. 4. Illustration of the vertex weight vWi and the respective order voi of the detected
centers for a one-dimensional graph.
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4.2. Clustering

The conceptual problem in Fig. 3 assumed that a path P satis-
fying the above criteria is already given. For an arbitrary graph and a
set of centers however there will be a multitude of paths that
connect the centers. Therefore the two conditions for splitting the
path at edge k still need to be generalized. One obstacle that has to
be overcome here is that with respect to a certain vertex vi there is
no obvious candidate for the ‘previous vertex’ or ‘previous edge’
respectively which can be used to determine the distance gradient.
This issue is addressed by introducing the vertex property vai
denoted as the allocation weight which will take the place of the
previous vertex. How this value is determined will be explained in
due course. As multiple vertices will have to be processed at the
same time we further require different states a vertex can assume
which will be denoted by the vertex property vsi . The possible states
are free, pending, active and passive which are illustrated in Fig. 5.
The cluster ID will be denoted by vIDi .

At the start of the algorithm all vertices are initialized with vai :¼
0. The centers vci assume the state active and each receives a unique
cluster ID. The remaining vertices are initialized as free.

Definition 1. Let vj be a vertex of the neighborhood of vi. Then vj
fulfills the gradient condition with respect to vi if

vai <wij: (4)

Definition 2. The term allocation is used to denote the process
under which an active vertex vi assigns a free vertex vj of the
neighborhood to its cluster providing that vj satisfies the gradient
condition. The properties of vj then change to vaj :¼ wij, vIDj :¼ vIDi
and vsj :¼ pending.

Definition 3. Let vi be an active vertex and vj an already allocated
vertex of its neighborhood. Then vj fulfills the update conditionwith
respect to vi if it satisfies the gradient condition and further satisfies

wij � vaj : (5)

Definition 4. The term update refers to the process under which
an active vertex vi overwrites the allocationweight of a neighboring
vertex vj if the update condition is fulfilled. The properties of vj then
change to vaj :¼ wij and vsj :¼ pending. The process of conquering a
neighboring vertex that has been allocated by a different cluster
further induces the change vIDj :¼ vIDi .

Using the above definitions we can now formulate a pseudo
code version of GBCC which is given in Algorithm 1. Lines 1 to 10
describe the initialization of the vertices. The actual clustering
happens in the while-loop of lines 11 to 30 which repeats until all
active vertices have been processed. The first step is always to
Fig. 5. Flow chart of the vertex states. At the start of the clustering algorithm all
centers are initialized as active while all other vertices are initialized as free. The al-
gorithm terminates once all vertices remain in the state passive.

ring method with special focus on hyperspectral imaging, Analytica
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determine the set of currently active vertices A. For each respective
vertex of that set the neighborhood N is determined which is then
processed using definitions 1 to 4. From a computational point of
view it does not make sense to distinguish between updating and
conquering as the only difference is that the cluster ID of the
respective vertex needs to be changed. Therefore the property vIDj is
always overwritten.

Lines 20, 24 and 28 describe the changes in the vertex states as
illustrated in Fig. 5. Once the currently active vertices have checked
their neighbors they fall back into the state passive. All vertices of
the respective neighborhoods that undergo the process of alloca-
tion, updating or conquering are set to pending. At the end of the
while-loop they become active and thus form the next generation
that tests its neighbors. In general a vertex will go through the
process of being set to pending by updating or conquering multiple
times since the initial allocation weight vaj is usually not the lowest
possible value. The algorithm finally terminates once there are no
more active vertices left.

Fig. 6 shows a clustering result where GBCC was applied to a 30-
nearest neighbor graph derived from an artificial dataset of three
mixing clusters. By using the detection method which was
described in section 4.1 the centers have been placed into the three
densest regions. The red lines that overlay the underlying graph
structure indicate the allocation weights. Starting from the centers
we can thus follow a path along the red lines along which the
distances between each consecutive pair of vertices increases until
we reach the border vertex. This is the two-dimensional version of
the conceptual idea illustrated in Fig. 3.

5. Experimental

The following sections are devoted to evaluating the charac-
teristics of GBCC both with respect to other clustering algorithms as
well as lowand high-dimensional spectroscopic data. In general the
evaluation and comparison of clustering algorithms is a problem-
atic subject. Von Luxburg et al. [18] severely criticized the common
approaches such as applying cluster validity indices [19] or using
labeled benchmark classification data as being insufficient and
sometimes completely misleading. They also pointed out that the
evaluations often fall short of actually measuring the usefulness of
the method in question. In light of these arguments we want to
stress that this evaluation is focused on hyperspectral images and
introduces assumptions about the structural situation in higher
dimensions that might not be applicable to other kinds of data at
Fig. 6. An example of applying GBCC to a 30-nearest neighbor graph of three mixing
clusters.
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all. We further want to highlight when the additional overhead of
using GBCCmay be justified andwhat the limitations of themethod
are.

The following computations were done using MATLAB R2016b
(The MathWorks, Inc.; mathworks.com). Result assessment and
visualizations regarding hyperspectral data were done using Epina
ImageLab (Epina GmbH; imagelab.at) by using its import routines
and scripting language ILabPascal.

5.1. 2D artificial dataset

The following clustering experiment offers a comparison of
GBCC, K-Means, DBSCAN [7] and KNSC [9]. The underlying artificial
dataset [dataset] [20] was designed manually and draws its inspi-
ration from structural aspects that can be seen in principal
component plots of hyperspectral data. One such characteristic is
the occurrence of the lobe-like structures which have already been
discussed in section 3. Further distance-separated, density-sepa-
rated, gradient-separated as well as connected clusters have been
placed into the dataset. Following the notion that clusters may vary
significantly with respect to their spatial extent the respective
separability problems are scaled at different levels and only
become visible by magnifying certain parts of the dataset. Another
special aspect of this dataset is that cluster borders have been kept
rather ambiguous. We believe that this better resembles the situ-
ation in spectroscopic data since the commonly used 2D shape
datasets [4,12,21e24] overemphasize the separability.

Fig. 7 summarizes the results. The unclustered data is given in
Fig. 7a. GBCC was applied to a 15-nearest neighbor graph using the
Euclidean distance as a similarity metric. The vertex weight vWi was
computed as defined in (1) using k ¼ 2 neighbors. The centers vci
were extracted as defined in (3) for a value of p ¼ 1 which resulted
in K ¼ 16 clusters. Fig. 7b and c shows the results where the former
also includes the underlying graph. The red lines indicate the
allocation weights which were used to determine the distance
gradient. K-Means was computed for K ¼ 20 clusters and is given in
Fig. 7d. The parameters of DBSCAN were set to MinPts ¼ 2 and
Eps ¼ 2:2 and produced the clustering in Fig. 7e. The result of KNSC
is given in Fig. 7f. Here we created an undirected 15-NN graph by
setting all wij :¼ wji if wij ¼ 0 and wjis0. The clustering was then
performed by following the procedure described in section 2 by
setting K ¼ 16.

A quick comparison of the results in Fig. 7cef shows that all
tested algorithms seem to have problems with identifying the lobe-
like structures as these are partitioned into smaller clusters. Seen
from the perspective of hyperspectral imaging this tells us that the
Euclidean metric might not be a suitable similarity measure for
these kinds of clusters.

Another distinguishing aspect between the four algorithms is
that K-Means and DBSCAN focused on the bulk features of the data,
whereas GBCC and KNSC created clusters that were adapted to the
scale of the underlying structures. This characteristic becomes
more evident if one compares the results of Figs. 7 to 8. Here close-
up views of the embedded microstructures are given for GBCC in
Fig. 8b and KNSC in Fig. 8c. Positions 1 and 2 indicate two density-
separable clusters. Another such example is the cluster at position 5
where the difference in density is even greater. Positions 3 and 4
indicate two clusters which are gradient-separable. Here both
GBCC and KNSC were able to separate them.

5.2. Hyperspectral images

While the above experiment gives a good impression of how
GBCC compares to other algorithms when exposed to a multi-
challenge artificial dataset it tells little about how it will behave
ring method with special focus on hyperspectral imaging, Analytica
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Fig. 7. Clustering of an artificial dataset [dataset] [20]. (a) unclustered data, (b) GBCC with underlying 15-NN graph and allocation weights highlighted in red, (c) GBCC, (d) K-Means,
(e) DBSCAN, (f) KNSC. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 8. Zoomed in views of the clustering for (a) unclustered data, (b) GBCC and (c) KNSC.
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when the clustering is performed on HSIs.
In the following sections we will evaluate GBCC on two well-

studied HSIs from the literature. The first test case is a multi-
sensor image [dataset] [26] of precipitated atmospheric particulate
matter combining energy dispersive electron probe X-ray (EDX)
and Raman microspectroscopy (RMS). The hypercubes of the EDX
and RMS measurements have been coregistered so that lateral
positions coincide and allow for a joint analysis. The image has a
size of 101� 101 pixels with 13 element specific bands in the EDX
cube and 1024 bands in the RMS cube which were measured from
202.7 cm�1 to 3335.1 cm�1. As this HSI has been thoroughly
analyzed by Ofner et al. [25] using principal component analysis
(PCA), hierarchical clustering of the loadings (PCA-HCA), K-Means
and vertex component analysis (VCA) we consider this dataset a
good choice for comparing GBCC to other chemometric approaches.

The second test case is taken from a recent study conducted by
Hufnagl et al. [28] where a classifier for detecting microplastics in
environmental fresh water samples has been developed. The
particular HSI [dataset] [27] shows a membrane filter on which a
spiked plankton sample has been concentrated for the purpose of
creating training data for supervised classification. The original
sample was spiked with a mixture of polymer particles consisting
of polyethylene (PE), polypropylene (PP), polystyrene (PS), poly-
acrylonitrile (PAN) and poly(methyl methacrylate) (PMMA). The
Please cite this article as: B. Hufnagl, H. Lohninger, A graph-based cluste
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image was measured using an FPA-based micro-FTIR microscope in
the range of 1249.6 cm�1 to 3594.5 cm�1 and has a size of
276� 295 pixels. Details on the sample pretreatment and the
measurement setup can be found in L€oder et al. [29,30]. The choice
for selecting this dataset was influenced by the idea that the results
of that study allow for a comparison between the clustering ob-
tained by applying GBCC and the classification obtained from a
random decision forest [31] classifier.

An important conclusion that can be drawn from the experi-
ment on the 2D artificial dataset is that the Euclidean metric seems
to be ill-suited for separating the lobe-like clusters that are ex-
pected to play a dominant role in the high-dimensional data
structure. Therefore the graphs used in the following experiments
are all based on the cosine similarity which reflects the angular
relation between the observations. As both the center detection
and the clustering step are rather complex algorithms we will
further evaluate each process separately.

5.2.1. Dimensionality reduction
The studies conducted by Ofner et al. [25] and Hufnagl et al. [28]

have in common that spectral descriptors [32,33] (SPDCs) were used
as a means of dimensionality reduction. The idea behind this
approach is to project the spectral features into a descriptor space of
reduced dimensionality by means of some simple predefined
ring method with special focus on hyperspectral imaging, Analytica
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mathematical functions. These can be as trivial as the baseline cor-
rected area of a peak or the ratio between two spectral raw in-
tensities. On the other hand more complex characteristic vibrational
band patterns may bemapped by computing correlation coefficients
between a template pattern and a specific spectral range.

In unsupervised learning approaches such as cluster analysis or
PCA the design of a set of SPDCs is donemanually and thus allows to
incorporate chemical expert knowledge. The outcome is a
descriptor space of reduced noise and improved data structure
which can boost the performance of chemometric techniques. For
the sake of brevity we will not describe this process in more detail
but provide the SPDC definitions as a supplement to this paper
[dataset] [34]. The interested reader may find a more in-depth
introduction and references in Hufnagl et al. [28].

The experiments which were conducted on the particulate
matter dataset were all done on unprocessed raw data in the
original feature space yet it should be kept in mind that Ofner et al.
[25] used SPDCs before applying PCA, PCA-HCA and K-Means.

In the case of the much more complex microplastic dataset a set
of SPDCs [dataset] [34] was used to reduce the original dimension-
ality of the hypercube from 609 spectral features to 30 descriptor
variables. As most of the added microplastics are in the size range of
10 mme200 mm the spectra exhibit severe baseline distortions due to
Mie scattering. These effects make a direct analysis of the raw data
very difficult for which reason we decided that such a data pre-
treatment was necessary for the purpose of this evaluation.
5.2.2. Center detection
To assess the performance of the center detection with respect

to its exploratory capabilities we first applied it to the raw data of
the particulate matter dataset (in this case EDX and RMS). Since
Ofner et al. used VCA on the raw data for confirming the findings of
the other chemometric methods this allows for a direct comparison
in the same feature space. VCA is an unsupervised unmixing
method proposed by Nascimento and Dias [35] which assumes that
an HSI is a linear mixture of so-called spectral endmembers. The
algorithm fits a d-simplex into the spectral raw data were each
vertex represents a pure chemical component.

In order to compare GBCC to VCA two 30-NN graphs were
computed for the EDX and RMS hypercubes. The vertex weight vWi
was calculated using a value of k ¼ 3. The computation of the order
of the centers voi as defined in (2) was limited to an upper value of u :

¼ 10. For the EDX spectra theminimumorder was set to p ¼ 2which
resulted in K ¼ 9 centers. The corresponding spectra were identified
as iron (Fe), silicon (Si), sodium chloride (NaCl) as well as sodium
nitrate (NaNO3) and are depiced in Fig. 9. The remaining spectra
were identified as background and were therefore not included in
the illustration. In the case of RMS theminimumorder was set to p ¼
1 which resulted in K ¼ 11 centers. These were identified as soot, Si,
NaNO3, secondary organic aerosol (SOA), calcium sulfate (CaSO4), a
mixture of CaSO4 and SOA as well as titanium dioxide (TiO2) and are
depicted in Fig. 10. The remaining spectra were identified as back-
ground. The results of this analysis are summarized in Table 1 where
a comparison to the results obtained by Ofner et al. is made.

The microplastic dataset which has been preprocessed as
described in section 5.2.1 was analyzed using a 30-NN graph. The
vertex weight was calculated using k ¼ 10 neighbors. The centers
were extracted by setting the minimum order to p ¼ 2 which
resulted in 122 clusters. By assessing the corresponding spectra of
each center the five polymers could be identified. The polymers PE
and PPwere each detected by one center. PS, PAN and PMMA on the
other hand were detected by two, three and five centers respec-
tively. The corresponding spectra are visualized in Fig. 11 where
spectra of the same polymer type have been superimposed.
Please cite this article as: B. Hufnagl, H. Lohninger, A graph-based cluste
Chimica Acta, https://doi.org/10.1016/j.aca.2019.10.071
5.2.3. Clustering
The clustering results of the particulate matter dataset are given

in Fig. 12. Here the associated clusters of the identified centers
overlay the SEM image of the atmospheric sample. Clusters which
have been identified as noise or background are not shown. For a
comparison to K-Means and PCA-HCA see Table 1. A more detailed
comparison is possible using the stack images given in Ofner et al.
[25].

The results of the microplastic dataset are given in Figs. 13 and
14. Since the underlying data structure of that HSI is quite com-
plex Fig. 13 shows a PCA analysis in combination with the detected
clusters. As discussed in section 3 the spatial extent of the clusters
varies by orders of magnitude. This is also the reason why the 122
clusters are not visible in Fig. 13a. In Fig. 13d a close-up 3D view
reveals that many clusters amass close to the origin. As an alter-
native visualization we also provide a spherical projection of the
first three principal components in Fig. 13b by which the angular
relationship between the clusters can be seen.

By assessing the spectral information of the center detection the
122 clusters were merged to form five polymer clusters and an
additional cluster for the remaining matrix and filter disc spectra.
The results of that combination can be seen in Fig. 13c as well as
Fig. 14d where the cluster map is superimposed with the optical
image of the filter disc. Of the 81420 pixels of this HSI 320 pixels
(0.39% of the data) were clustered as PE, 257 (0.31%) as PP, 812
(1.0%) as PS, 2172 (2.7%) as PAN and 3181 (3.9%) as PMMA.

5.3. Discussion

A key aspect of the proposed algorithm is its ability to detect
clusters independently of their relative data density and spatial
extent. This quality could be proven by applying GBCC to the arti-
ficial dataset in Figs. 7 and 8 were it is quite plain to see that only
KNSC scales its clusters in a comparable manner. These findings
already show that GBCC can detect micro and macro structures at
the same time which clearly distinguishes this approach from the
well-established K-Means algorithm.

Another distinct quality is the spectroscopic interpretability of
the detected cluster centers which allows to identify chemical
compounds. Figs. 9 and 10 in conjunction with Table 1 show that
the center detection provides comparable results with respect to
VCAwhen applied to the raw data of the EDX and RMS hypercubes.
In the case of the more complex microplastic dataset the spectral
information allowed for a quick identification and merging of the
12 polymer clusters as well as the 110 matrix and filter disc spectra.
This translated the seemingly meaningless result in Fig. 14c into an
easily interpretable cluster image in Fig. 14d.

A typical characteristic of spectroscopic data is its high dimen-
sionality which can have a significant negative impact on many
chemometric techniques. Here the conducted experiment on the
RMS hypercube shows that the center detection can still perform
very well in a 1024-dimensional feature space. However when
comparing Fig. 12a and bwe note that the CaSO4 cluster and some of
the other clusters are considerably more noisy than in the EDX hy-
percube and contain some false assignments. Please note that Si is an
impurity of the aluminum foil and as such is correctly detected.

With respect to the comparison of the results which is shown in
Table 1 we conclude that GBCC performed comparable to VCA and
thus may be applied as an alternative strategy for detecting pure
chemical compounds. Not surprisingly the results that were ob-
tained by applying SPDCs as a dimensionality reduction technique
performed significantly better, especially if one considers the PCA-
HCA approach. This clearly shows the advantages of combining
multisensor data and chemical expert knowledge, but hampers the
comparability between the respective approaches due to the
ring method with special focus on hyperspectral imaging, Analytica



Fig. 9. A selection of centers detected in the EDX hypercube. The centers were identified as iron (Fe), sodium nitrate (NaNO3), sodium chloride (NaCl) and silicon (Si). BS denotes the
back scattering signal.

Fig. 10. A selection of detected centers in the RMS hypercube. The centers were
identified as silicon (Si), sodium nitrate (NaNO3), soot, secondary organic aerosol
(SOA), calcium sulfate (CaSO4), a mixture of CaSO4 and SOA, and titanium dioxide
(TiO2).

Table 1
GBCC in comparison with the results obtained by Ofner et al. [25]. This comparison
includes the original feature spaces of energy dispersive electron probe X-ray (EDX)
and Raman microspectroscopy (RMS) as well as the results obtained by applying
spectral descriptors (SPDCs).

method feature space Fe Si NaCl NaNO3 soot SOA CaSO4 TiO2

PCA SPDC n n n n y n n y
PCA-HCA SPDC y y y y y y y y
K-Means SPDC n y y y y y n y
VCA EDX n y y y n n y y
VCA RMS n y n y y y n y
GBCC EDX y y y y n n n n
GBCC RMS n n n y y y y y

Fig. 11. A selection of detected polymer centers in the Microplastic dataset. The 12
centers were identified as polyethylene (PE), polypropylene (PP), poly(methyl meth-
acrylate) (PMMA), polyacrylonitrile (PAN) and polystyrene (PS).
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Fig. 12. SEM image of atmospheric particulate matter [dataset] [25,26] overlayed with the clustering result. (a) EDX; pink, NaCl; orange, Si; red, Fe; blue, NaNO3. (b) RMS; red, soot;
blue CaSO4, yellow, TiO2; green, CaSO4/SOA; cyan, SOA; pink, NaNO3; orange, Si. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 13. Cluster analysis of the microplastic dataset [dataset] [27]. (a) PC plot of the 1st and 2nd component; (b) scores of the three largest components projected onto a sphere; (c)
highlighted polymer clusters; (d) close-up view of the origin in a 3D PCA plot. The small circles indicate a detected center.
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different feature spaces.
In the case of the microplastic dataset which was also pre-

processed using the SPDC approach the results obtained by GBCC
are in good agreement with the classification result of the random
decision forest as can be seen in Fig. 14a and b. If one closely
compares the identified microplastics it is interesting to note that
the clustered particles are in many cases slightly larger than their
classified counterparts. This effect can be explained by considering
Please cite this article as: B. Hufnagl, H. Lohninger, A graph-based cluste
Chimica Acta, https://doi.org/10.1016/j.aca.2019.10.071
the mathematical differences between the algorithms. In super-
vised learning the decision rules are inferred from training data and
are as such fixed once the classification model is applied to the
target data. Contrary to that unsupervised learning approaches
such as clustering deduce the decision rules based on structural
aspects of the data. This is the reason why GBCC is more flexible
with respect to the spectra at the particle edges than the random
decision forest.
ring method with special focus on hyperspectral imaging, Analytica



Fig. 14. Clustering results of the microplastic dataset [dataset] [27]. (a) GBCC’s merged clusters based on the detected polymer centers; (b) random decision forest classification
result as published by Hufnagl et al. [28] under a Creative Commons Attribution 4.0 International License (https://doi.org/10.1039/c9ay00252a); (c) unprocessed output showing the
original 122 clusters; (d) merged clusters overlayed with the optical image of the filter disc; Pink, PE; orange, PP; purple, PMMA; cyan, PAN; green, PS; black/transparent, matrix and
filter surface. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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An important aspect when choosing algorithms for exploratory
analysis is the computational cost which has to be weighted against
the benefits of the respective approach. For the purpose of evaluating
GBCC with respect to kNN graphs we conducted complete searches
for the k nearest neighbors. One should keep in mind that such
computations are very costly and are of order Oðdn2Þ where d de-
notes the dimension of the feature space and n the number of ob-
jects. As the determination of the kNN is an important problem in
most data retrieval systems a lot of research is devoted to specialized
hardware and algorithms that lower the computation time by
finding approximate nearest neighbors. See for example Chen et al.
[36] for a fast algorithm in high-dimensional spaces and Sismanis
et al. [37] for a parallel GPU implementation. As the computation of
the kNN graph forms the bottleneck of the method we consider the
costs of applying GBCC for the purpose of exploratory analysis
acceptable yet also conclude that the application in the context of
routine analysis will likely be too time consuming. On the other hand
alternative settings such as computing approximate nearest neigh-
bors or subsampling of the data as well as determining the effect of
lowering the number of neighbors kwhere not explored in this study
which can have a significant impact on computation times.

6. Conclusion

In this paper we proposed a novel clustering method dubbed
Please cite this article as: B. Hufnagl, H. Lohninger, A graph-based cluste
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GBCC which can handle clusters independently of their relative
differences in data density and spatial extent. In the view of the
authors this constitutes the most important finding of this study as
only KNSC, which is also a graph-based method, showed a similar
behaviour. Contrary to that K-Means which is a predominant
clustering algorithm in chemometrics focused mainly on the bulk
features of the data.

With respect to the dilemma of choosing a clustering algorithm
[38] for a dataset we therefore conclude that it is less a question of
selecting the ‘right’ or the ‘best’ one but rather to choose two
antithetic algorithms. With this in mind a combined cluster anal-
ysis using GBCC and e.g. K-Means might give more insights than a
combination of methods that behave very similarly.

As for the usefulness [18] of the method we conclude the
following: GBCC is a sensitive method that can detect small varia-
tions in data density and thus allows an analysis of minor features
which might be overlooked by other clustering algorithms. If this
trait is of little importance in your field of study or the dataset is
known to be of low structural complexity then GBCC might not be
the right way to go, especially if one considers the increased
computational costs of graph-based clustering approaches. On the
other hand this assumption could be the pitfall that causes you to
miss an important detail.

Algorithm 1. Pseudocode of GBCC.
ring method with special focus on hyperspectral imaging, Analytica
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